古典吧>历史上的今天>法国数学家费马出生

法国数学家费马出生

在424年前的今天,1601年8月17日(农历1601年7月20日),法国数学家费马出生。

皮埃尔·德·费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼克·费马在当业余数学家之王—费马地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。

费马的父亲由于富有和经营有道,颇受人们尊敬,并因此获得了地方事务顾问的头衔,但费马小的时候并没有因为家境的富裕而产生多少优越感。费马的母亲名叫克拉莱·德·罗格,出身穿袍贵族。多米尼克的大富与罗格的大贵族构筑了费马极富贵的身价。

费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙·德·洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。

17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。1523年,佛朗期瓦一世组织成立了一个专门鬻卖官爵的机关,公开出售官职。这种官职鬻卖的社会现象一经产生,便应时代的需要而一发不可收拾,且弥留今日。

鬻卖官职,一方面迎合了那些富有者,使其获得官位从而提高社会地位,另一方面也使政府的财政状况得以好转。因此到了17世纪,除宫廷官和军官以外的任何官职都可以买卖了。直到今日,法院的书记官、公证人、传达人等职务,仍没有完全摆脱买卖性质。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙·德·洛马涅买好了“律师”和“参议员”的职位。等到费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员,时值1631 年。

尽管费马从步入社会直到去世都没有失去官职,而且逐年得到提升,但是据记载,费马并没有什么政绩,应付官场的能力也极普通,更谈不上什么领导才能。不过,费马并未因此而中断升迁。在费马任了七年地方议会议员之后,升任了调查参议员,这个官职有权对行政当局进行调查和提出质疑。

1642年,有一位权威人士叫勃里斯亚斯,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭,这使得费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。

费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝·德·罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”。

费马生有三女二男,除了大女儿克拉莱出嫁之外,四个子女都使费马感到体面。两个女儿当上了牧师,次子当上了菲玛雷斯的副主教。尤其是长子克莱曼特·萨摩尔,他不仅继承了费马的公职,在1665年当上了律师,而且还整理了费马的数学论著。如果不是费马长子积极出版费马的数学论著,很难说费马能对数学产生如此重大的影响,因为大部分论文都是在费马死后,由其长子负责发表的。从这个意义上说,萨摩尔也称得上是费马事业上的继承人。

对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。

费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论著,连一部完整的著作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。我们现在早就认识到时间性对于科学的重要,即使在l7世纪,这个问题也是突出的。费马的数学研究成果不及时发表,得不到传播和发展,并不完全是个人的名誉损失,而是影响了那个时代数学前进的步伐。

费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。

费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于牛顿、莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学大才费马堪称是 17世纪法国最伟大的数学家。

17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。